USN								-	

Third Semester B.E. Degree Examination, June/July 2014 Data Structures with C

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. What is pointer? How pointers are declared and initialized in C? (03 Marks)
 - b. What is dangling pointer reference and how to avoid it? (04 Marks)
 - c. Estimate the space complexity of a recursive function for summing a list of numbers.

(05 Marks)

- d. Define the term "space and time complexity". Apply program step counter method to estimate the time complexity of a function to add two matrices. (08 Marks)
- 2 a. With a suitable example, explain dynamic memory allocation for 2-d arrays. (04 Marks)
 - b. Define a structure for the employee with the following fields:

 Emp_Id(integer), Emp_Name(string), Emp_Basic(float), Emp_Dept(string) and

 Emp_Age(integer). Write the following functions to process the employee data:
 - i) Function to read an employee record
 - ii) Function to print an employee record.

(08 Marks)

c. Write the "fast transpose" algorithm of a sparse matrix. Why the name "fast transpose"?

(08 Marks)

- a. What is the advantage of circular queue over linear queue? Write the insert and delete functions for circular implementation of queues. (08 Marks)
 - b. Explain infix to postfix expression algorithm and trace it for an expression "a * (b + c) * d".

 (08 Marks)
 - c. How multiple stacks implemented using one dimensional array? Explain with a suitable example. (04 Marks)
- 4 a. Write the following functions for singly linked list:
 - i) Reverse the list ii) Concatenate two lists.

(08 Marks)

- b. Write the node structure for linked representation of polynomial. Explain the algorithm to add two polynomials represented using linked lists. (08 Marks)
- c. What is the advantage of doubly linked list over singly linked list? Illustrate with an example. (04 Marks)

PART - B

- 5 a. Illustrate with a suitable example define:
 - i) Binary tree
 - ii) Degree of a binary tree
 - iii) Level of a binary tree
 - iv) Sibling.

(08 Marks)

- b. For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2, then prove that $n_0 = n_2 + 1$. (04 Marks)
- c. What is the advantage of threaded binary tree over binary tree? Explain threaded binary tree construction with a suitable example. (08 Marks)

- 6 a. What is binary search tree? Write a recursive search routine for a binary search tree.
 - (08 Marks)

b. Explain selection trees, with suitable example.

(06 Marks)

- c. What is a forest? With a suitable example illustrate how you transform a forest into a binary tree. (06 Marks)
- 7 a. Define priority queue. List the single ended and double-ended priority queue operations.
 (06 Marks)
 - b. Define the following:
 - i) Leftist trees
 - ii) Min leftist trees and
 - iii) Weighted leftist trees.

(06 Marks)

- c. What is binomial heap? Explain the following associated with binomial heap:
 - i) Insertion into a binomial heap
 - ii) Melding two binomial heaps and
 - iii) Deletion of min element.

(08 Marks)

- Write short notes on:
 - a. Optimal binary search trees
 - b. AVL trees
 - c. Red black trees
 - d. Splay trees.

(20 Marks)